Energie opslaan in waterstof 20 keer effectiever met katalysator van platina-nikkel
Katalysatoren versnellen chemische reacties, maar het hierbij veelgebruikte metaal platina is schaars en duur. Onderzoekers van de Technische Universiteit Eindhoven (TU/e) hebben nu samen met Chinese, Singaporese en Japanse onderzoekers een alternatief ontwikkeld met een 20x hogere activiteit: een katalysator met holle nanokooien van een legering van nikkel en platina. TU/e-onderzoeker Emiel Hensen wil op termijn met deze nieuwe katalysator een elektrolyzer op koelkastformaat ontwikkelen van ongeveer 10 megawatt. De resultaten zijn gepubliceerd in het vakblad Science.
De rijksoverheid wil in 2050 bijna alle benodigde energie voor Nederland uit duurzame bronnen halen, bijvoorbeeld van de zon of de wind. Omdat deze energiebronnen niet op elk moment beschikbaar zijn, is het belangrijk om de opgewekte energie op te kunnen slaan. Vanwege hun lage energiedichtheid zijn batterijen niet geschikt om zeer grote hoeveelheden energie op te slaan, dit kun je beter doen in chemische bindingen. Waterstof is daarbij het meest voor de hand liggende gas. Een elektrolyzer zet (een overschot van) elektrische energie met water om in waterstof, dat opgeslagen kan worden. Op een later tijdstip doet een brandstofcel het omgekeerde, waarbij het opgeslagen waterstof weer omgezet wordt in elektrische energie. Voor beide technologieën is een katalysator nodig die het proces aanzwengelt.
De katalysator die helpt bij deze omzettingen is – vanwege zijn hoge activiteit – veelal gemaakt van platina. Maar platina is erg duur en relatief schaars; een probleem als we op grote schaal electrolyzers en brandstofcellen willen gebruiken. TU/e-hoogleraar katalyse Emiel Hensen: “Collega-onderzoekers uit China ontwikkelden daarom een legering van platina en nikkel, waarmee de kosten omlaag en de activiteit juist omhoog gaan.” Een effectieve katalysator heeft namelijk een hoge activiteit; het zet per seconde meer watermoleculen om in waterstof. Hensen vervolgt: “Bij de TU/e hebben we de invloed van nikkel op de meest belangrijke reactiestappen onderzocht. Hiervoor ontwikkelden we een computermodel gebaseerd op beelden van een elektronenmicroscoop. Met kwantumchemische berekeningen wisten we zo de activiteit van de nieuwe legering te voorspellen, en konden we begrijpen waarom deze nieuwe katalysator zo effectief is.”
Naast de andere metaalkeuze, wisten de onderzoekers ook de morfologie flink aan te passen. De atomen in de katalysator moeten namelijk een binding aangaan met de watermoleculen om deze om te kunnen zetten. Meer bindingsplaatsen leidt dus tot een hogere activiteit. Hensen: “Je wilt dan ook zoveel mogelijk metaaloppervlak beschikbaar maken. De ontwikkelde holle nanokooien zijn naast de buitenkant, ook van binnenuit te benaderen. Zo ontstaat een groot oppervlak, waardoor meer materiaal tegelijkertijd kan reageren.” Hensen toonde bovendien met kwantumchemische berekeningen aan dat de specifieke oppervlaktestructuren die de nanokooien vertonen de activiteit nóg verder verhogen.
Beide oplossingen blijken na het doorrekenen in Hensen’s model een 20 keer hogere activiteit op te leveren dan de huidige katalysatoren van platina. En dat resultaat hebben de onderzoekers ook teruggevonden in experimentele tests in een brandstofcel. “Een belangrijk kritiekpunt op veel fundamenteel werk is dat het zijn ding in het lab doet, maar als iemand het in een echt apparaat stopt dan werkt het vaak niet. Wij hebben laten zien dat het écht werkt.” Een katalysator moet zó stabiel zijn, dat deze jarenlang in een waterstofauto of woonhuis kan blijven werken. De onderzoekers hebben de katalysator daarom 50.000 ‘ronden’ getest in de brandstofcel, en zagen daarbij een te verwaarlozen afname in activiteit.
De rijksoverheid wil in 2050 bijna alle benodigde energie voor Nederland uit duurzame bronnen halen, bijvoorbeeld van de zon of de wind. Omdat deze energiebronnen niet op elk moment beschikbaar zijn, is het belangrijk om de opgewekte energie op te kunnen slaan. Vanwege hun lage energiedichtheid zijn batterijen niet geschikt om zeer grote hoeveelheden energie op te slaan, dit kun je beter doen in chemische bindingen. Waterstof is daarbij het meest voor de hand liggende gas. Een elektrolyzer zet (een overschot van) elektrische energie met water om in waterstof, dat opgeslagen kan worden. Op een later tijdstip doet een brandstofcel het omgekeerde, waarbij het opgeslagen waterstof weer omgezet wordt in elektrische energie. Voor beide technologieën is een katalysator nodig die het proces aanzwengelt.
De katalysator die helpt bij deze omzettingen is – vanwege zijn hoge activiteit – veelal gemaakt van platina. Maar platina is erg duur en relatief schaars; een probleem als we op grote schaal electrolyzers en brandstofcellen willen gebruiken. TU/e-hoogleraar katalyse Emiel Hensen: “Collega-onderzoekers uit China ontwikkelden daarom een legering van platina en nikkel, waarmee de kosten omlaag en de activiteit juist omhoog gaan.” Een effectieve katalysator heeft namelijk een hoge activiteit; het zet per seconde meer watermoleculen om in waterstof. Hensen vervolgt: “Bij de TU/e hebben we de invloed van nikkel op de meest belangrijke reactiestappen onderzocht. Hiervoor ontwikkelden we een computermodel gebaseerd op beelden van een elektronenmicroscoop. Met kwantumchemische berekeningen wisten we zo de activiteit van de nieuwe legering te voorspellen, en konden we begrijpen waarom deze nieuwe katalysator zo effectief is.”
Naast de andere metaalkeuze, wisten de onderzoekers ook de morfologie flink aan te passen. De atomen in de katalysator moeten namelijk een binding aangaan met de watermoleculen om deze om te kunnen zetten. Meer bindingsplaatsen leidt dus tot een hogere activiteit. Hensen: “Je wilt dan ook zoveel mogelijk metaaloppervlak beschikbaar maken. De ontwikkelde holle nanokooien zijn naast de buitenkant, ook van binnenuit te benaderen. Zo ontstaat een groot oppervlak, waardoor meer materiaal tegelijkertijd kan reageren.” Hensen toonde bovendien met kwantumchemische berekeningen aan dat de specifieke oppervlaktestructuren die de nanokooien vertonen de activiteit nóg verder verhogen.
Beide oplossingen blijken na het doorrekenen in Hensen’s model een 20 keer hogere activiteit op te leveren dan de huidige katalysatoren van platina. En dat resultaat hebben de onderzoekers ook teruggevonden in experimentele tests in een brandstofcel. “Een belangrijk kritiekpunt op veel fundamenteel werk is dat het zijn ding in het lab doet, maar als iemand het in een echt apparaat stopt dan werkt het vaak niet. Wij hebben laten zien dat het écht werkt.” Een katalysator moet zó stabiel zijn, dat deze jarenlang in een waterstofauto of woonhuis kan blijven werken. De onderzoekers hebben de katalysator daarom 50.000 ‘ronden’ getest in de brandstofcel, en zagen daarbij een te verwaarlozen afname in activiteit.
Geen opmerkingen: